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ABSTRACT

Direct measurements of the power deposited in the

anode of a multi-megawatt MPD accelerator using thermo-

couples attached to a thin shell anode reveal a dramatic

decrease in the fractional anode power from 50% at 200 kW

input power to less than 10% at 20 MW power. The corres-

ponding local power flux peaks at a value of 10,000 W/cm2

at the lip of the anode exhaust orifice, a distribution

traced to a corresponding peak in the local current dens-

ity at the anode. A comparison of voltage-current charac-

teristics and spectral photographs of the MPD discharge

using quartz, boron nitride and Plexiglas insulators with

various mass injection configurations has led to the identi-

fication of different voltage modes and regions of ablation

free operation. The technique of piezoelectric impact pres-

sure measurement in the MPD exhaust flow has been refined

to account for the effects due to probe yaw angle.

In the hollow cathode portion of the program, spectral

photographs of the discharge with low mass flows through the

cathode reveal a radiance of ionized argon inside the cavity

which is absent at high flow rates. The possibility that

some fraction of the current is attached inside the cathode

may also be reflected in the voltage-current characteristic,

which shows an abrupt slope change for low mass flow and in-

creasing current. A simple analysis of the balance between

gasdynamic and magnetic pressure in the cavity supports this

conclusion.

In preparation for development of the MPD arc as a

plasmadynamic laser source, axial and radial profiles of the

spectral radiance from neutral and ionized argon show that

ii



the recombination process is essentially complete 36 cm

downstream of the anode. Initial relative measurements of

the optical depth of two ionized argon lines for various

operating conditions indicate substantial differences in the

total absorption for these transitions.

iii
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I. INTRODUCTION

The original research topic of this grant on plasma

acceleration has been extended recently to include work
142

on hollow cathode physics and plasmadynamic lasers,

and these activities will now provide additional theses

projects for our graduate students. This semi-annual re-

port describes the progress over the past six months on

each of these three aspects of the research program.

The investigations of the physical processes in the

MPD thruster to be reported here include a) anode power

dissipation, b) voltage-current characteristics of dis-

charge chambers constructed with boron nitride or quartz

backplates, c) injected propellant distributions and

d) impact pressure measurement techniques which have been

refined considerably. The first three projects are now

approaching conclusion, while the piezoelectric pressure

measurements will continue for determinations of thruster

performance.

Work on hollow cathode discharges has been accelerated

by the operation and calibration of apparatus designed and

constructed specifically for these studies. Photographs

taken through selected spectral filters establish that- ion-

ized propellant exists inside the cathode cavity under par-

ticular operating conditions. For this discharge mode, the

voltage-current characteristics of the hollow cathode have

been mapped over a wide range of mass flows and currents.

Detailed probing of the distributions of potential and cur-

rent inside the cavity and in the surrounding flow is now

in progress.
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In connection with the plasmadynamic laser studies,

the recombination and relaxation processes in the plasma

flow are being assessed from spectroscopic data on the

distribution of ionization levels. Radiation from neutral

argon (AI) in the near-infrared region of the spectrum has

been studied to supplement earlier spectrographic work on

AII and AIII. Photoelectric recordings of the radiation

profiles in the argon plasma flow from the discharge in a

chamber with a boron nitride backplate provide additional

background for the laser studies.

The absorption or amplification of radiation in an

active medium manifests itself in the sign and magnitude

of the optical depth. Therefore, as the next step in the

plasmadynamic laser studies, the relative optical depth

for a few spectral lines of the propellant has been deter-

mined.

Finally, it is to be mentioned that Mr. David B. Fradkin,

a former graduate student of this laboratory, has submitted

a dissertation for the Ph.D. degree on "Analysis of Accelera-

tion Mechanisms and Performance of an Applied Field Arcjet."
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II. QUASI-STEADY MPD DISCHARGE

II-A. Anode Power Deposition (Saber)

Steady state MPD arcs operating in a power regime up

to several hundreds of kilowatts characteristically suffer

power fluxes to the anode of up to one-half of the total

input power. A-1 This power loss necessarily limits the

power which can be deposited in the propellant, only a

portion of which ultimately appears as useful thrust power.

Early experiments in this laboratory, which yielded

the floating potential and current density distributions

near the anode of a pulsed quasi-steady MPD arc operating

at multi-megawatt power levels, revealed that the fraction

of the total power deposited into the anode, as indirectly

deduced from these local plasma measurements, decreased as

the total arc power increased.1 1 3  The expectation is that

with a smaller fraction of the power lost to the anode, a

greater fraction will appear as directed kinetic energy,

i.e. the thrust efficiency will increase as the arc power

increases. This exciting possibility led to an experiment

designed to measure directly, with thermocouples, the power

deposited in the anode. The early results of this study

verified the expected trend of the anode power fraction de-

creasing with arc total power over a limited range of quasi-
143

steady arc powers. This trend has recently been substan-

iated over an extended range of operating conditions: arc

powers from 200 kW to 20 MW with currents from 5.5 kA to

44 kA and argon propellant mass flows of 1 to 48 g/sec. In

addition, a complementary program of plasma diagnostic prob-

ing near the anode has begun in order to gain insight into the

specific mechanisms that produce the anode fractional power

drop.
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Apparatus

The geometry of the MPD arc used for the anode power

deposition study, shown schematically in Fig. 1, has been

described in detail previously. Briefly, it differs

from the usual MPD configuration by the 1 mm thick alum-

inum shell anode which is internally fitted with 12 copper-

constantan thermocouples: two on the discharge chamber side,

six in the region of the lip and four on the downstream

face. The current conduction area and the overall thruster

dimensions and materials are identical to those in the

standard thruster.141

Anode Temperature Rise

The local temperature rise in the anode shell was de-

termined by amplifying the signals of the internally mounted

thermocouples. Due to the time required for heat to diffuse

through the thickness of the shell from the outer surface

to the thermocouples, the temperature rise was not measured

during the 0.5 to 1 msec quasi-steady operating period, but

20 msec later. Analysis of the temperature profiles has

shown that the heat flux along the shell is negligible by

comparison during this time, i.e. the temperature data 20

msec after the discharge can still be used to infer the dis-

tribution of heat flux into the anode.

The temperature profile along the anode is shown in

Fig. 2 for three typical operating conditions. The abscissa

represents a linearly rolled-out anode; it traces a line of

constant azimuth along the anode surface from the chamber

insulator, around the lip (with the anode midplane at 0.0 cm)

to the outer radial boundary of the conduction region. The

three operating conditions are related by the parameter

,"J2/ 7", the square of the total arc current divided by the

injected propellant mass flow, which is held constant at

10 kA2-sec/g. The significance of this parameter to the

anode power data will be discussed later.
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For all three operating conditions, the anode tempera-

ture rise is markedly peaked about the lip and decreases by

more than an order-of-magnitude along the downstream face

and discharge chamber side of the anode.

Anode Heat Flux

Using anode temperature profiles such as those shown

in Fig. 2 and the local one-dimensional heat flux model dis-
143

cussed previously, the quasi-steady heat flux into the

anode can be calculated. The one-dimensional model is veri-

fied by the measured negligible heat conduction along the

anode shell as compared to the heat flux through the shell

wall.

The anode heat flux distributions for the same three

operating conditions are shown in Fig. 3. Contrary to ear-

lier indications from the current density and potential
113

measurements, power is not uniformly deposited into the

anode. Taking, for example, the 22 kA, 48 g/sec argon mass

flow condition, the local anode heat flux ranges from 80

W/cm2 on the chamber side to about 400 W/cm2 on the down-

stream face peaking at 10,000 W/cm2, over a factor-of-ten

higher, at the lip.

Anode Power

By integrating the measured heat flux over the entire

anode surface the power deposited in the anode during the

quasi-steady pulse can be calculated. Figure 4 is a graph

of anode power fraction vs. argon propellant mass flow for

fixed arc currents of 11, 16 and 22 kA. It demonstrates

that for any given value of current there is a maximum in

the measured anode fractional power. For example, for the

16 kA condition, the anode power fraction peaks at about

0.2 when the injected argon mass flow is about 15 g/sec.

For mass flows above or below this level the measured rela-

tive anode power decreases.
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The tendency for the peak of the fractional anode power

to occur at larger mass flows for larger arc currents sug-

gests that the data may be better characterized by plotting

it against a single parameter such as J2/m. This parameter

has been shown previously to correlate many features of arc

radiance patterns and current and potential distributions

for MPD discharges at various currents and mass flows.1 4 1

Figure 5 shows the present fractional anode power data

plotted against the parameter J 2/, where m is the injected

argon mass flow. The peaks for different fixed current op-

eration lie approximately at the same value of the abscissa

(J2/m - 16 kA 2-sec/g) indicating that this dimensional factor

may have further significance for anode power deposition

studies.

The observed drop in fractional anode power when arc

operating conditions are such that J2/1i is greater than

16 kA2-sec/g may be artificial since many studies in the

past have shown that above some characteristic value of

j2/A dependent upon the propellant species and arc geome-

try, ablation of the arc chamber insulators or electrodes

begins. A-2,118 When this occurs, the total mass flow through

the discharge is greater than the injected argon flow and

hence the true operating value of J2/m is lower than what

would be calculated on the basis of the argon flow alone.

The variation of anode power fraction with total arc

power is shown in Fig. 6. This graph expands considerably

on the amount of data and on the range of conditions examined

previously. Power levels range from 200 kW to 20 MW (arc

currents of 5.5 to 44 kA) with mass flows appropriate to

cover values of J 2/ from 5 to 80 kA 2-sec/g. Verifying the

earlier data, the anode power fraction (for any particular

value of J2/7) decreases as the input power increases. The

anode power fraction of 50% at about 200 kW agrees well with
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the results for "high" power steady state arcs that have
A-3

been operated at other laboratories. As the arc power

is increased to the multi-megawatt level the anode power

fraction drops by nearly an order-of-magnitude to less than

10%, strongly indicating a more efficient production of

thrust.

This inverse dependence of anode fractional power with

arc power, even at the highest J2/i conditions where ablated

material may play a significant role in the arc operation,

suggests that the trend to decreasing relative anode power

applies to vacuum or ablation arcs where the propellant is

completely supplied by the ablation of a solid insulating

material.

In steady state arc performance experiments, the anode

loss is usually expressed as an equivalent voltage obtained

by dividing the total anode power by the total current,

PA/J. This voltage is plotted in Fig. 7 against the J2/m

parameter for all of the data conditions of this study. It

is of interest to note that, although the spread in the data

exceeds the typical error bar, a clear peaking of the data

at J2/i = 16 kA2-sec/g is evident. The usefulness of this

curve may be limited by ablation effects which become prom-

inent as J2/m increases beyond the maximum in the equivalent

voltage.

Applicability of the Anode Heat Flux Model

The results described in Fig. 7 suggest the definition

of an equivalent local anode fall voltage V' utilizing the

model commonly employed for the calculation of the anode heat

flux:143

kT

qa ja(Va+ 2 e + $w) + ad + 'conv (1)
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where qa is the local anode heat flux, ja the local

current density at the anode, Va the local anode fall

voltage, Te the electron temperature, lw the work

function of the material, k Boltzman's constant, e the

charge on an electron and rad and onv the contributions

from radiation and convection. Radiation and convection

contributions are usually neglected in steady state arcs

allowing the heat flux model to become the product of two

factors: the current density, ja, and an equivalent vol-

tage, V' where

kT
V' =Va+ e + ow (2)

a 2 e

The voltage V' can be determined for the quasi-steady

MPD thruster by dividing the local anode heat flux by the

local current density at the anode. The current density in

the anode vicinity has been measured by detailed probing

for the operating conditions of 11 kA x 12 g/sec, 16 kA x 24

g/sec and 22 kA x 48 g/seco These conditions correspond to

an arc operating parameter J2/f = 10 kA2-sec/g, where spuri-

ous propellant effects are minimal. Preliminary local anode

current density profiles, shown in Fig. 8, display a peak

in the vicinity of the lip just as the local anode heat flux.

Further understanding of the applicability of the simple heat

flux model (qa = jaV') requires more detailed current density

probing and the measurement of the local anode fall voltage,

both of which are presently in progress.
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II-B. Effect of Refractory Insulator Material on the
Voltage-Current Characteristic (Boyle)

Recent work by Bruckner demonstrated that insulator

material could have a profound effect upon the exhaust
141

structure of a quasi-steady MPD arc accelerator. As a

consequence of insulator ablation an inhomogeneous species

distribution arises in the discharge characterized by a

complex exhaust structure of azimuthally alternating jets

of argon and ionized ablation products surrounding a core

of ablated materials. When this species structure is com-

pared with a velocity profile obtained close to the anode

orifice, the combination suggests that insulator ablation

may also directly alter the acceleration and velocity pat-

terns of an otherwise all argon arc. The time-of-flight

velocity profile, shown in Fig. 9, consists of a central

core region with an average plasma velocity of 21 km/sec

and two outer wings, each with an average plasma velocity

of 8.8 km/sec. 1 1 8  Superimposing Bruckner's radial species

distribution upon this velocity profile, the ablation prod-

ucts of the Plexiglas insulator (carbon, oxygen, hydrogen)

occupy the central core region while the injected argon

propellant occupies the outer wings. Identifying the aver-

age mass per atom on the centerline with the mean atomic

mass of Plexiglas' atomic constituents, M = 6.7 amu, one sees

that the kinetic energy per argon ion and the kinetic energy

per ablation particle are equal to within 6%. This suggests

that the high centerline velocity may be a consequence of the

low average atomic weight of carbon, hydrogen, and oxygen.

The inverse dependence of average velocity on the square root

of the mass has been previously observed in steady state dis-
A-5

charges by Malliaris and Libby at AVCO. Thus it becomes

evident that a proper understanding of MPD arc processes and
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performance critically depends upon eliminating insulator

effects from the overall problem. For this reason, two

complementary programs have been undertaken; one to investi-

gate the effects of various mass injection geometries for a

given insulator material (Section II-C), and another to in-

vestigate the effects of various insulator materials for a

given mass injection geometry. The results of the latter

study are reported here.

Voltage-current characteristics of the accelerator are

obtained for Plexiglas, boron nitride and quartz insulator

backplates at injected argon mass flow rates of 6, 12 and

32 g/sec. In all cases argon propellant is axially injec-

ted into the discharge chamber through six 0.48-cm-dia flush

orifices in the insulator backplate symmetrically distribu-

ted at the 2.54 cm radius. The arc current, J, measured by

a Rogowski loop, and the terminal arc voltage, V, measured

by a Tektronix P6013A high voltage probe are simultaneously

displayed on a Tektronix 555 dual beam oscilloscope.

Plexiglas, boron nitride and quartz were selected for

comparison because of the wide ranges encompassed by their

different mechanical, thermal and molecular properties.

Hence, equivalence among their respective V-J characteris-

tics for a particular range of currents and injected mass

flows is taken as the criterion for determining that the in-

sulators are not partaking in arc operations for those con-

ditions. Identifying such regions of coincidence is one of

the main objectives of this study.

The voltage-current characteristics of the MPD arc run-

ning with each of the insulator materials are presented in

Figs. 10a, b and c for m = 6, 12, and 32 g/sec respectively.

Several general comments may be made immediately. For low

values of current at a given mass flow rate, the boron

nitride and quartz voltages are equal within experimental
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error, and the Plexiglas voltages are greater than the re-

fractory insulator voltages. For currents above a cross-

over value Jx I the inequality reverses. In this high

current regime it is further seen that the boron nitride

voltages are higher than those with the quartz insulation.

Referring to Table I, J is an increasing function of mass

flow rate but shows little correlation with J /m, a scaling

parameter which has been used previously to correlate cer-

tain features of MPD arc operation.

However, it can be stated that to first order J does

distinguish between regions of non-ablation and ablation

for the refractory insulator materials. Consider the V-J

characteristics for the m = 6 g/sec case (Fig. 10a). Be-

low Jx = 13.3 kA, in a regime considered "overfed", the

boron nitride and quartz characteristics coincide, indica-

tive of no insulator participation in arc operation as

postulated earlier, i.e. no ablation. Indeed, spectrograms

of the arc discharge running with a quartz insulator at

J = 7.5 kA, m = 6 g/sec show a complete absence of quartz

ablation products (Fig. 11a). On the other hand spectro-

gram llb observed at J = 17 kA > Jx clearly indicates pres-

ence of Si II, Si III, Si IV and 0 II, the ionized ablation

products of the quartz insulator. Similarly the occurrence

of boron nitride ablation is indicated by the BII, BIII and

NII, NIII spectral lines identified in spectrogram 11c under

similar conditions.

Table I

m(g/sec) J (kA) Jx / g

6 13.5 30.4

12 17.5 25.5

32 20.0 12.5
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The same sharp distinction regarding the presence of

ablation under certain conditions cannot be made in the

case of the Plexiglas insulation. The presence of hydro-
0

gen radiance at 6563 A observed through a narrow band in-

terference filter when the arc is operated in the "overfed"

condition implies that insulator ablation persists in spite

of being overfed.143

As a consequence of this ablation, low atomic weight

species are introduced into the discharge thereby lowering

the average atomic weight of the exhaust plasma. Follow-

ing the previously mentioned inverse dependence between the

average exhaust velocity and the square root of the aver-

age atomic weight, ablation will thereby have the effect of

increasing that velocity, which in turn increases the mo-

tional back emf contribution to the terminal arc voltage.

This trend is consistent with the observed disparity be-

tween the Plexiglas and refractory material characteristics

for J < Jx

For J l Jx spectroscopic data indicate that all the in-

sulator materials ablate. Explanations of the differences

between the three insulator voltages in this region are

qualitative at best and require ad hoc assumptions regarding

the ablation process which can not be justified at this time

due to lack of experimental data.

Qualitatively, the V-J characteristics indicate that

the MPD arc's tendency to ablate may be alleviated in two

ways for a given mass injection geometry. First, as might

be expected, increasing the injected argon mass flow rate

substantially reduces the relative disparity among the V-J

characteristics. Furthermore, the use of refractory insu-

lator materials delays the onset of ablation as demonstrated

by the large current range over which the boron nitride and

quartz V-J characteristics coincide. However, even though
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the region of ablation-free arc operation is extended in

these ways, this extension still falls short of those con-

ditions considered to be of propulsion interest. Thus one

concludes that a complete solution to the ablation problem

lies in a judicious combination of both injection geometry

and insulator material.

Apart from the relative differences among the various

insulator V-J characteristics, what appear to be distinct

voltage modes of arc operation may be discerned upon examin-

ing the shape of an individual characteristic and the charac-

ter of its associated voltage traces. For a given mass flow

rate, as the current is increased, the voltage signature

changes abruptly from a flat smooth response (Fig. 12b-2) to

a flat, highly oscillatory signal with a frequency of order

100 kc (Fig. 12b-1). Further increase in the arc current

eventually causes the voltage signature to peak early in its

time history and steadily decline thereafter. The onset of

high frequency voltage fluctuations is accompanied by an

equally abrupt change in the curvature of the V-J character-

istic in Fig. 12a, which is typical of any of the charac-

teristics previously shown in Fig. 10a, b, and c. The cur-

rent at which this "kink" occurs in the V-J characteristic,

JT' corresponds with that current for which the voltage

trace becomes unstable. This voltage mode transition is

found to occur for all three insulator materials examined

and for all the mass flow rates employed, although evidence

of the transitions in the Plexiglas case is far more subtle

than in the boron nitride and quartz cases. It is interest-

ing to note that this voltage mode transition occurs at

JT/ = 15.3 + 3.5 kA2-sec/g, a value which also appears in
Saber's anode power work (Section II-A).

In an initial attempt to call forth any peculiarities

associated with the modes identified above, the discharge
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was photographed through various narrow band spectral fil-

ters with quartz as the insulating backplate and at a mass

flow rate of 6 g/sec. The most interesting of these photos

are presented in Fig. 12c. Each is an end-on view of the
0

accelerator cathode as seen through a 5910 A interference
0

filter (75 A bandwidth). Figures 12c-2 and 12c-1 correspond

t6 current magnitudes of 7.5 kA and 17 kA, respectively.

Thus according to Fig. 12a, c-2 is associated with mode I

and 12c-1 is associated with mode II of arc operation. One

immediately notes the striking radiation pattern associated

with mode I. The spoke-like streaks originate at the base

of the conical tungsten cathode, run up along the cathode

surface and intersect a bright ring situated midway between
0

cathode base and tip. For this condition the 5910 A filter

will allow only tungsten line radiation as well as continuum

radiation to be transmitted. One may speculate that the

radiation pattern represents the regions of current attach-

ment and electron emission occurring on the cathode surface

characteristic of mode I operation.

Mode II, represented by Fig. 12c-1, is characterized

by an intense diffuse blob of continuum radiation originat-

ing from or in front of the cathode tip. Increasing the cur-

rent level in mode II further constricts this cathode attach-

ment and introduces what appears to be a luminous asymmetry

emerging from the cathode tip.

In summary the following two conclusions may be drawn:

1. For this mass injection geometry, use of refrac-

tory insulator materials defines a range of cur-

rents and mass flow rates which permit ablation-

free arc operation in regions where Plexiglas

insulation is prone to ablate. In spite of this

improvement over the Plexiglas insulator, arc

operation with refractory insulators at high
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currents J Z Jx' remains plagued by ablation

phenomena indicating that the ultimate back-

plate will have to be a judicious combination

of both insulator material and injection

geometry.

2. For this mass injection geometry, the arc appears

to run in different voltage modes as a function

of total arc current and these modes may in part

be characterized by different cathode surface

phenomena.

Future work will combine the positive results of both

the insulator material and injection geometry studies into

an overall accelerator configuration which warrants a de-

tailed examination of the velocity profiles and the accel-

eration processes devoid of any ablation phenomena. In

addition such future study will attempt to further charac-

terize and correlate the voltage modes identified herein

with those same acceleration processes.
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II-C. Distribution of Injected Propellant (Villani)

Using spectrally resolved photographs of the discharge

radiance, Bruckner showed that the presence of a severe

azimuthal species nonuniformity in the MPD exhaust flow was

associated with the six propellant injection ports.1 4 1

Subsequent accelerator operation with an annular propellant

injector eliminated the azimuthal structure and also re-

vealed a sensitivity of the terminal voltage and of the

apparent ablation, as judged by photographs of the singly-

ionized and molecular carbon line radiation, to the radius

of this annular injector.1 4 3  In further tests using single

annulus injectors of various radii, the following restric-

tions on injected propellant distribution were deduced:

1. Flow is required near the anode in order to

produce a flat voltage during the quasi-steady

portion of the pulse.

2. Flow is required near the cathode to produce the

lowest voltage for a given current.

3. Flow is required along the Plexiglas insulator

in order to minimize its ablation.

Attempts to satisfy these partially conflicting requirements

with a single annulus located near the cathode base and turned

to divert the flow at various angles with respect to the ac-
143

celerator centerline met with only partial success.

To examine this problem in more detail, a special arc

chamber was constructed which simplified the installation
143

and evaluation of trial injectors. In the most recent

tests, double annulus injection stencils were prepared which

allowed complete control of the flow rate through each annu-

lus, independent of the shape, angle or area of the annulus.

Evaluation of the double annulus injection over a limited
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range of mass flows and the full range of flow division

between inner and outer annuli is the subject of this re-

port.

Apparatus

The differences in operating principles between the

double annulus and the previous single annulus stencils

are shown in Fig. 13. In the single annulus head (Fig.

13a), propellant flow is metered at the choked orifice of

a solenoid valve (Skinner C2DB1062) and feeds into the

plenum through a total of 24 holes in six injectors, pass-

ing thence through the injection stencil into the arc cham-

ber in the desired pattern. In the differential control

head (Fig. 13b), flow metering occurs at 12 small holes in

the injector caps, with the plenum split by the divider ring

into two separate volumes, each fed by six of the 12 orifices.

Alternate sets of injector caps are available which provide

percentage flow divisions of approximately 0:100, 30:70,

50:50, 70:30 or 100:0 between the inner and outer annuli.

To insure that the choking occurs at the injection caps

rather than the valve, a large-orifice valve (Skinner

V52DB2017) with a metering area four times that of the pre-

vious type is used. Total mass flow is determined experi-

mentally through the use of a double-action valve power
119,A-2supply and a fast ionization gauge as described elsewhere.

Flow division is calculated on the basis of orifice dimen-

sions.

Two geometries were studied on the differential con-

trol head, one of them an interpolation and one an extra-

polation of previous knowledge (Fig. 14). The interpolation

(referred to as the +45° geometry, Fig. 14a) is a simple com-

bination of two earlier geometries, each of which satisfies

some of the injection design goals. As described previous-
143

ly, it was found that if propellant is injected near the
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base of the cathode, at a flow angle of 450 radially out-

ward, the terminal voltage is quite low, although time vary-

ing, and spectral filter photographs show very little C2 or

CII band or line radiance, indicating possibly low ablation.

Injection parallel to the axis at an intermediate to large

radius on the other hand produces an extremely flat voltage

signature, but has the penalty of high voltage and high ab-

lation rate. It was hoped that injection through an appro-

priate combination of a small-radius, +450 annulus and a

large-radius 00 annulus would provide a combination of low

voltage, flat voltage, and low ablation.

The other geometry studied (referred to as the -160

geometry, Fig. 14b) is an attempt to extrapolate our previous

experimental range. Briefly, the flow from the outer annulus

(diverted 200 radially inward) should provide a flat voltage

by virtue of its large injection radius and it should reduce

ablation by producing inward flow along the backplate. The

inner annulus should provide adequate mass flow to the in-

tense central portion of the discharge, reducing the power

losses there.

Both geometries were studied at 16.5 kiloamps, with

total mass flow ranging from 6 to 12 g/sec and flow divi-

sions of 0, 30%, 50%,70% and 100% through the inner annulus

and the remainder through the outer annulus. Voltage and

current were monitored on a Tektronix type 555 dual-beam

oscilloscope, and spectral filter photographs were taken

with a new Burleigh Brooks Super Cambo 4x5 view camera fit-

ted with a Schneider Tele-Xenar 500 mm telephoto lens.

Results of Differential Injection Survey

It is instructive to compare the results obtained with

these two geometries with the immediate goals of this in-

jector configuration study - low voltage, flat voltage and

minimum ablation for a fixed current.
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Voltage Magnitude: For the +450 geometry with a cur-

rent of 16.5 kA, Fig. 15 shows the dependence of peak quasi-

steady voltage on total mass flow for 100% of the flow

through the inner or outer annulus (Fig. 15a) and on flow

division between inner and outer annuli for total mass flows

of 6 and 12 g/sec (Fig. 15b)o Also shown for comparison are

data taken with the earlier single large radius annulus (same

radius as the outer annulus of this geometry) and the single

+450 annulus (same radius as the inner annulus of this geome-

try). Similarly, Fig. 16 shows the same voltage charac-

teristics for the -160 geometry.

Figures 15a and 16a show that regardless of the flow

injection location, the voltage always decreases as the mass

flow increases. This dependence has been found for any flow

division between annuli. For a fixed mass flow, Fig. 15b

shows that the voltage decreases monotonically in the +450

geometry as the fraction of total flow through the inner

annulus increases. By contrast, the -16 © geometry exhibits

either a slightly increasing voltage or a decreasing voltage

as the percentage flow through the inner annulus increases,

depending on the magnitude of the particular total mass flow.

For the 16.5 kA, 6 g/sec operating condition where consider-

able data has been acquired in the past, the lowest terminal

voltage was measured with the +45° geometry with 100% of the

flow through the inner annulus.

Voltage Flatness: Terminal voltage traces at selected

conditions are shown in Fig. 17, taken with a slow sweep rate

to accentuate any irregularities. It can be seen that the

+450 geometry exhibits flatter voltages than the -16° geom-

etry. For the latter case, the voltages become increasingly

peaked as the flow through the inner annulus is increased

(Figs. 17d, e, f). At the present time, the physical basis

for the unsteady voltage is not well understood, but may be
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related to lack of charge carriers near the anode. For the

+450 geometry, the curious trend of the 0% and 100% inner

annulus flow cases exhibiting the flattest voltages (Figs.

17a and 17c) may still be related to the charge carrier

density at the anode since the inner annulus diverts the

flow toward the anode.

Luminosity Patterns: Argon and carbon line-radiation

photographed through spectral filters at the 16.5 kA, 6 g/sec

condition are shown in Figs. 18 and 19 at selected flow

divisions for both geometries. The argon photos (left side)

show, as expected, an increase in argon ion line radiation

in the vicinity of the cathode as the flow division is

shifted toward the inner annulus. In addition, comparison

of Figs. 18 and 19 for the same flow division shows a greater

argon ion line radiation on the centerline for the -16°

geometry, consistent with the more direct injection into

this area. The carbon photos of both geometries (right

side) contain an interesting feature: a ring of light with

well defined inner and outer boundaries which moves inward

as the flow division shifts toward the outer annulus. Photos

taken at intermediate flow divisions confirm the continuous

movement of the luminous ring, which may be identified as

the region of the insulator not protected by the injected

argon. Close examination of the carbon photos shows that,

except for the small bright ring at the base of the cathode,

the total luminosity of ablated carbon appears to be a mini-

mum for the +45° geometry with 100% of the flow through the

inner annulus. Referring back to Fig. 14a, it is seen that

the bright ring is associated with the unprotected surface

of the inner insulator between the cathode and inner annulus.

Based on the results of these experiments, the +450

geometry with 100% of the flow through the inner annulus

appears to be the most interesting of the two injection con-

figurations from the standpoint of minimum voltage, minimum
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ablation, and reasonably flat voltage record. In order to

determine whether the 45° injection is in fact a local op-

timum, data have been obtained for single annulus injectors

of +90 , +220, 00 and -16°, all with an exposed inner insu-

lator shoulder comparable to the 45° injector (approximate-

ly 4 mm). In addition, a 670 annulus with an 8-mm-shoulder

was also tested. Since the inner annulus of the original

-160 geometry injected flow along the cathode surface (zero

shoulder), the -160 annulus with the 4-mm-shoulder was in-

cluded to evaluate the effect of this shoulder.

The results for these various annuli are plotted in

Fig. 20 for the 16.5 kA, 6 g/sec condition. For the pres-

ent electrode geometry and a fixed insulator shoulder be-

tween the inner lip of the annulus and the cathode base,

the optimum propellant injection angle appears to be greater

or equal to 450 which again suggests the importance of de-

livering propellant to the anode region. The effect of the

shoulder is seen in the circular data points. The open

circle, which is for the +670, 8-mm-shoulder case, produces

an arc voltage which is 30 volts greater than the voltage

trend implied by the 4-mm-shoulder data. The solid circle

is the earlier data point acquired with the zero-shoulder

configuration. Injection at -16 © with a 4-mm-shoulder pro-

duced a voltage of 240 volts, the largest yet observed with

a Plexiglas injector stencil.

The latter results strongly suggest one other test to

answer the following interesting question. Since increasing

the shoulder dimensions produces an apparent 30 volt increase

in the terminal voltage (+670 case) and alternatively, elimi-

nating the shoulder in the -16 © case produces a 30 volt de-

crease, the question arises whether the minimum observed vol-

tage (160 volts for the +45© case) can be further reduced by

yet an additional 30 volts simply by removing the 4-mm-shoulder.
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An injection configuration to answer this question is pres-

ently under construction.

Future Work

Subject to the result of the above test with the +450

geometry, it will be possible to identify for the present

electrode geometry a local optimum injection configuration,

i.e. one which is relatively free of extraneous loss mech-

anisms. The next experimental step consists of mapping the

enclosed current contours and floating potential distribu-

tions in the arc chamber at the optimum and selected non-

optimum conditions. This will serve a number of purposes:

First, it will determine whether the current pattern is al-

tered radically in the presence of changes in the propellant

injection pattern. Since acceleration through the MPD dis-

charge depends strongly on the local profile of the current

and self=magnetic field interaction, the current distribu-

tion could greatly affect the profile and divergence losses

in the exhaust flowo Second, knowing the current and float-

ing potential distributions, the power deposition per unit

volume can be calculated. This can be correlated with the

propellant injection configuration to provide information

relating local energy sinks with local propellant density.

In addition, local measurements of E-field and current dens-

ity vectors will assist in the determination of local con-

ductivity and vector flow-field.
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II-Do Impact Pressure Measurements with a Piezoelectric
Probe (Dutt)

A piezoelectric pressure probe has recently been de-

veloped which is capable of measuring the local momentum
125

flux in the quasi-steady MPD exhaust. In conjunction

with local measurements of flow velocity and flow angle

obtained with biased double electrostatic probes, a de-

tailed mapping of the mass, momentum and energy fluxes over

the entire exhaust plume is possible.1 3 8 ' 1 4 3

The accuracy with which previous pressure probe sig-

nals could be reduced to local values of the momentum flux

was limited by incomplete information in two areas:

1. The static pressure, p, could not be separated

from the measured total pressure, Pt' without

certain ad hoc assumptions based on a limited

amount of spectroscopic data.

2. The response of the pressure probe to flows that

are not parallel to the probe axis, i.e. flows

not normally incident on the probe tip, was not

fully understood.

The experiments described here are directed toward im-

proving our understanding in this second area.

Yaw Correction

When supersonic flow is normal to the flat probe tip,

there is a detached bow shock wave in front of the probe.

The probe tip in our case is sufficiently blunt so that the

shock wave may be approximated by a normal shock in the

region in front of the probe, after which the flow is assumed

to stagnate isentropically on the probe tip. When the in-

cident flow is not normal to the probe tip, many complex

phenomena are introduced:
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(a) The detached shock wave may no longer be

approximated by a normal shock,

(b) the flow is turned after passing through the

oblique shock,

(c) for sufficiently large angles of incidence

the shock may not be detached at all, and

(d) the components of velocity parallel to the

probe surface cause transverse forces to

act on the probe tip. These forces excite

transverse and shear modes in the thin Plexi-

glas rod in which the piezoelectric crystal

is embedded, which in turn cause spurious

signals to be generated in the crystal.

Since the strength and structure of the bow shock de-

pend on the free stream Mach number, M, and the ratio of

specific heats, X , it is possible that the response of the

probe will depend on the particular arc operating condition

as well as on the angle of incidence of the flow on the

probe tip. In the present experiment, the probe was rotated

through various angles of flow incidence while maintaining

the operating conditions at a current of 16 kA and a mass

flow of 6 g/sec.

Probe Characteristics

The piezoelectric probe has been described in detail

previously.1 2 5 '1 4 3  Briefly, it consists of a piezoelectric

crystal (PZT-5) embedded in a Plexiglas acoustic delay rod

1 m long and 0.95 cm in diameter. The rod is suspended in-

side a tube of 7 cm diameter, the front end of which is

closed except for a 2.5 cm diameter extension with a 1.3 cm

diameter hole to accommodate the probe tip. The probe tip

is recessed about 1 mm behind the front end of the tube ex-

tension.
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The tube and probe assembly is mounted in the vacuum

tank on a new movable platform whose position is altered

using four electric motors. With this new platform, it is

possible to remotely move the probe in the accelerator axial

direction as well as the horizontal and vertical directions

perpendicular to the axis. In addition it is possible to

rotate the probe to an arbitrary angle of incidence in the

horizontal plane. Figure 21 shows a top view of a typical

probe arrangement in the vacuum tank.

Piezoelectric pressure probes are susceptible to spur-

ious pickup of electromagnetic noise associated with the dis-

charge. The noise alone can be measured in the present case

by shielding the probe from the plasma with a small cap on

the end of the tube housing. With this shield in place, a

survey throughout the exhaust plume showed the noise, or

null signal, to be approximately constant with respect to

both probe location and time during the discharge at a

value of 17 ± 4 mV. The 4 mV average deviation is small

compared to the centerline probe response to plasma flow

(" 200 mV)o The response of the probe to all stresses, R2,

is thus obtained by subtracting the null signal, N , from

the total probe output, R1.

Flows not normally incident on the probe exert a force

which may be resolved into components normal and tangential

to the probe tip, each of which generates a different probe

response. The normal force excites longitudinal stress waves

which propagate down the Plexiglas rod, reflect off the end

surface and return to the crystal after 0.86 msec. Thus, the

time for undistorted measurements of the longitudinal stresses

is the 0.86 msec following the first probe response.

The tangential component has an effect on the probe

which is dependent on the direction of the force because the

stress-measuring crystal is not isotropic. Since the probe
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was maintained on the horizontal plane through the accel-

erator centerline for the present experiments, the tan-

gential component was horizontal, i.e. it had only 2

possible directions depending on whether the angle of

flow incidence on the probe (oc) was positive or negative.

Separate calibration studies using the Hertzian impact of

a small steel ball on the probe tip show that the probe

response due to equal and opposite tangential forces is

also equal and opposite. Furthermore, the tangential force

excites transient vibrations in the probe which are of much

lower frequency than the longitudinal oscillation so that

over the 1 msec discharge period, the effect of the tangen-

tial force is to shift the baseline of the oscillogram trace

such that the probe response with respect to the shifted

baseline is entirely due to the normal component of the force.

In other words, approximately 0.05 msec after discharge ter-

mination the probe response due to the normal force falls

to zero while the response R3  due to only the transverse

force persists and reaches a maximum in about 1.5 msec. The

magnitude of this response R3  at 0.05 msec after discharge

termination is approximately the same level as just before

it and can therefore be accounted for as the mentioned base-

line shift.

Consequently, in order to determine the normal component

of the force, the following procedure was used (refer to the

oscillograms and their schematic representations in Fig. 22):

Using a 0.75 msec current pulse (Fig. 22a) the baseline shift

(R3) was measured at 0.81 msec after current pulse initiation.

Then, using a 1 msec pulse (Fig. 22b) the total signal (R1)

was measured at 0.81 msec at the same location and probe

orientation. From these two values, the net signal (R4) due

to the normal component of force at 0.81 ms was obtained.
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The purpose of the present experiment was to determine

the dependence of the probe normal force on the angle of

flow incidence. Profiles of probe signals (R1 and R3) were

taken at Z= 25.4 cm with three different fixed orientations

of the probe of 9=0, + 100, +200. (Larger probe angle

settings were not possible in the 90-cm-dia vacuum tank.)

The signal (R4) due to the normal force was calculated in

each case as described above. The true angle of flow in-

cidence to the probe, o , was given at each position by

o = o(r) + 0 (3)

where oCo(r) is the flow angle with respect to the accel-

erator centerline, as determined from a biased double

probe,1 3 1' 1 3 8 and 0 is the fixed probe angle with re-

spect to the accelerator centerline (see Fig. 21). Thus,

for each location of the probe tip, the variation of the

probe normal force over a 200 range of incident flow angle

is recorded.

Results

A typical profile of the normal component of force has

been plotted in Fig. 23a for a probe inclination of 0 = 0°

and radial locations out to 20 cm. For comparison, Fig. 23b

shows the previously measured flow angles for the same axial

station. Although the size of the probe and vacuum tank pre-

cludes determining the yaw sensitivity for a continuously

changing incidence angle at a given position, data from

Fig. 23a and similar profiles at probe inclinations of 100

and 200 may be patched together to obtain a nondimensional

variation of R4 with oC in the range of 0° to 40o. The re-

sulting probe angular response is shown in Fig. 24. This

plot shows that the response of the probe is relatively in-

sensitive to flow incidence angle up to angles of 300. For
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larger angles, the response appears to decrease rapidly.

This result is in reasonable agreement with plots of the

effect of yaw on various impact pressure probes in a wide

range of ambient flow conditions.

Conclusions

By accounting for the effect of the transverse component

of force, it is possible to determine the piezoelectric pres-

sure probe response to an arbitrarily directed flow. Ad-

ditional data at large radii, where the probe signal is

small but the contribution to integrated quantities is

large, are necessary to complete the yaw sensitivity correc-

tion. Future experiments will provide this information as

well as measure the ratio of static pressure to total pres-

sure.
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IIIo THE HOLLOW CATHODE DISCHARGE (Krishnan)

Hollow cathodes were first used to advantage in spectro-

scopic studies where they were shown to be capable of simul-

taneously providing high electron number density and relative-

ly low temperature ions and neutrals in the essentially field-
A-7

free cathode cavity. More recently, hollow cathodes have

been used in ion engines where they exhibit a lower specific

heating power and longer lifetime than previously used oxide
A-8

coated or liquid mercury cathodes. However, only few de-

tailed analyses of the physical processes inside the hollow
A-9

cathode have been attempted, and the scaling parameters

and laws for hollow cathodes have not yet been developed.

The objectives of the experimental hollow cathode re-

search in this laboratory are: 1) to determine whether hollow

cathode operation can be achieved in the multi-megawatt MPD

discharge, 2) to compare the characteristics of this operation

to those of the ion engine hollow cathode, 3) to examine whet-

er the same advantages for hollow cathode operation in ion en-

gines (most notably increased efficiency, decreased erosion,

and stable operation) prevail for the MPD accelerator with a

hollow cathode, 4) to determine the scaling laws for character-

istic hollow cathode operation in order to bridge the gap be-

tween the high current MPD arcs and the important low current

regime of the ion engine, and 5) to provide, wherever possible,

direct support for the ion engine hollow cathode program.

Throughout this program, diagnostic probing directly with-

in the cavity will provide a detailed account of the current

and potential distributions as well as the thermodynamic state

of the propellant. This probing is possible because of the

larger diameter cathode required for the high power MPD dis-

charge. The hollow cathode used in the present investigations
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(diameter of 1.27 cm) is large enough to permit access into

the cavity for optical observations and diagnostic probes

while maintaining good resolution and minimal perturbation

of the cavity plasma.

Description and Calibration of Apparatus

A schematic of the apparatus is shown in Fig. 25. Argon

propellant is injected into the discharge chamber through a

solenoid valve to six injection ports and also through the

hollow cathode orifice. These orifices are arranged symmet-

rically at a radius of 25.4 mm from the centerline of the dis-

charge chamber. The mass flow rate is determined by the res-

ervoir pressure and the total area of the seven injector ori-

fices. (The precise control of the mass flow by varying this

area is discussed in detail later.) Power is supplied as an

essentially rectangular current pulse from a 936-pfd, high

voltage capacitor bank. A typical trace of the current pulse

is shown in Fig. 26a. The current is monitored by a Rogowski

loop around the cathode lead and the terminal voltage of the

discharge is measured with a Tektronix P-6013A voltage probe.

Both are recorded by a Tektronix dual beam oscilloscope.

In addition to discharge voltage, discharge current and

total mass flow, another parameter must be added for MPD arc

operation with the hollow cathode - namely, the fraction of

the total mass flow that passes through the cathode cavity.

If the propellant flow chokes (Mach No. = 1) at the inlet

orifices, then the total mass flow rate can be changed simp-

ly by varying the area of these orifices. Furthermore, the

fractional division of the total flow through the hollow

cathode cavity and the outer injectors can be controlled

precisely by changing the relative areas of the orifices.

(Previously the flow choked at the solenoid valve orifice

and hence the supersonic flow entering the discharge chamber

orifices could not be accurately divided into "outside" and
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"inside" flow.) Several injector plugs were then fabricated

such that 5, 10, 25, 50, 75 or 100% of the total flow can be

injected through the hollow cathode. The largest total area

of the orifices is restricted to 16 mm2 or about 30% of the

50 mm2 valve orifice area to ensure that the choking of the

propellant flow occurs at the injector orifices.

The calibration of this mass flow system proceeded in

the following three steps:

Step A: The hollow cathode cavity was plugged and the
2

6 outer injectors, of total area 16 mm , were installed. The

vacuum tank was separated from the vacuum pump by closing a

valve, and the solenoid valve was activated by a rectangular

current pulse from a Hewlett Packard pulse generator. For

a given reservoir pressure the density-time history inside

the discharge chamber was monitored by a Varian Millitorr

(T.M.) fast ionization gauge. The ion gauge signal and

valve current for a typical flow test without discharge are

shown in Fig. 26b. The pressure in the vacuum tank before

and after the current pulse was measured with a McLeod gauge.

For successively increasing pulse lengths from the pulse

generator the pressure rise per pulse Ap in the tank and the

half width & t of the millitorr gauge response were measured

each time. A plot of Ap against AT reveals a linear re-

lationship, as expected, the slope of which is the mass flow

for the given reservoir pressure. This procedure was then

repeated at several other reservoir pressures. A graph of

the mass flow m versus the reservoir pressure is shown as

line A in Fig. 27.

Step B: Two of the six injector plugs were then blanked

off and the procedure outlined in step A was repeated. Another

straight line, line B, of reservoir pressure versus argon mass

flow rate was obtained (Fig. 27). The slope of this graph is

67% of the slope of the graph produced in step A. The total
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cross sectional area of four injectors used in step B is also

67% of the total area of the six injectors of step A, veri-

fying that the cold gas flow indeed chokes at the inlet ori-

fices to the discharge chamber. As further corroboration,

the Skinner valve catalog flow chart was used to compute a

choked argon mass flow of 17 g/sec through the 0.795-cm-dia

valve orifice for a reservoir pressure of 1.8 x 105 N/m2 .

The experimental calibration, however, shows an argon mass

flow of 6 g/sec at this pressure proving that the flow through

the valve orifice indeed occurs at a Mach number much smaller

than unity.

Step C: The outer six injectors were sealed off and a

single 16 mm2 orifice was inserted coaxially into the hollow

cathode about 10 mm behind the plane of the discharge chamber

backwall insulator. In this configuration all the gas enters

the hollow cathode cavity through an area equal to the total

area of the six outer injectors used in step A. The cali-

bration technique of step A was repeated and a straight line

dependence of the reservoir pressure on argon mass flow rate

was found (Fig. 27, line C). Line C for all the flow through

the cathode is seen to be identical (within the margin of

the error bars) to line A for the entire flow through the

outer six injectors. Thus, the choked mass flow rate is

proportional to reservoir pressure and the total area of

the injector orifices and is insensitive to fractional divi-

sions of that area. The only constraint is that the total

area must be less than or equal to 16 mm 2 to produce a choked

flow over the given range of reservoir pressures.

Experimental

1) Flow both inside and outside the hollow cathode

With the entire 6 g/sec argon mass flow through the outer

six injectors the current to the discharge was varied from

5 kA to 20 kA while monitoring the discharge voltage to obtain
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the voltage-current characteristic (a) shown in Fig.28.

Then the mass flow rate was reduced to 3 g/sec (still all

outside flow) to obtain the voltage-current characteristic

(b) in Fig. 28. The voltage at a given current is observed

to be higher for the lower mass flow rate consistent with

previous results obtained with a conical solid tungsten

cathode. However, the voltages are lower than those with

a solid conical cathode discharge at the same mass flow which

are shown for comparison at m = 6 g/sec as a dashed line (c)

in Fig. 28. Thus, by changing only the configuration of the

cathode in an MPD discharge, significant changes in the

voltage-current characteristic are produced.

Next, the injectors were arranged to permit a total

m of 12 g/sec of argon flow with 6 g/sec through the hollow

cathode and 6 g/sec outside flow. For this total mass flow

of 12 g/sec, voltage-current characteristic (d) was recorded

(Fig. 28). Another characteristic, total mass flow of

6 g/sec with 3 g/sec through the cathode and 3 g/sec on the

outside, is shown as line (e) in Fig. 28. It is remarkable

that the m = 12 g/sec V-J characteristic (d) with 6 g/sec

flow through the cathode and 6 g/sec outside flow is iden-

tical to the m = 6 g/sec characteristic (a) with all the

flow outside and similarly that the m = 6 g/sec characteris-

tic (e) with 3 g/sec flow through the cathode is also iden-

tical to the m = 3 g/sec characteristic (b) with all outside

flow. The conclusion is that for the relatively high flow

rates of 6 g/sec and 3 g/sec through the cathode, the par-

ticipation of the cavity in the discharge is not manifest

on the V-J characteristics. This is further supported by a

photograph of the discharge at m = 12 g/sec through a 4880

narrow bandpass filter shown in Fig. 29 (b). The luminous

regions of the discharge are all seen to be outside the hollow

cathode cavity, while the cavity itself appears quite dark.
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This suggests the possibility that the 6 g/sec flowing through

the hollow cathode may not ionize and possibly passes right

through the cathode cavity as neutral argon. The outer flow

of 6 g/sec of argon is ionized, as evidenced by its luminos-

ity in the photograph, and determines the electrical proper-

ties of the discharge.

2) Flow solely through the hollow cathode

Since the above experiments suggested that current was

not attaching inside the hollow cathode when flow was equal-

ly divided between the inside and outside of the cathode, the

outside flow was cut off altogether. Spectral photographs

(4880 A) of the discharge at 11, 18 and 26 kA and a 6 g/sec

flow entirely through the cathode are shown in Fig. 30.

Figure 30a shows the view of the discharge chamber used for

the photographs in Fig. 30b) and c), while Fig. 30d) shows

the arrangement for the photograph in Fig. 30e).

The hollow cathode cavity appears as a dark region at

11 kA in Fig. 30b and at 18 kA in Fig. 30c and all the lumi-

nosity of the discharge is observed principally beyond the

cavity orifice. The photograph of the discharge at 26 kA in

Fig. 30e) still shows the dark cavity but the luminosity now

emanates from a "pinched" region of the discharge in front of

the cathode. Thus, although increasing the discharge current

to 26 kA has the effect of "pinching" the discharge to smaller

radii, the gasdynamic pressure of the flow in the cavity may

still be too high to allow current penetration into the cav-

ity. Similar results were obtained when the injected hollow

cathode flow was reduced to 2 g/sec.

The next phase of the experiment may be introduced by

the following qualitative examination of the dynamics of the

hollow cathode cavity flow for the case where the current

attaches to both the inside and outside of the cavity.
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Figure 31 shows an assumed current pattern for the hollow

cathode. The electromagnetic j x B interaction produces

a radial "pumping' force, fz = - jz B9, and an axial "blow-

ing" force, fz = - Jr Be, inside the hollow cathode. The

fact that inside the cavity the magnetic pressure (Bg /2po)

acts in an upstream direction opposing the downstream gas

flow suggests the requirement of a dynamical balance between

these two opposing pressures. Thus, it might be speculated

that at the relatively high argon mass flow rates of 6 g/sec

and 2 g/sec the gasdynamic pressure is high enough to blow

the discharge out of the cavity (see Appendix). To test

this simple model the mass flow rate in the hollow cathode

was reduced by a large factor to 0.30 g/sec and the discharge

current was increased to 29 kA. Figures 32b and 32d show, in

frontal and side views respectively, that there is now a bright

luminosity emanating from inside the cavity orifice implying

current attachment inside the hollow cathode.

Another set of spectral photographs heightens the com-

parison between a discharge at 12 kA and 6 g/sec inside flow

with no luminosity inside the hollow cathode (Fig. 33a, b,

and c) and a discharge at 29 kA and 0.3 g/sec inside flow with

bright argon AII radiance emanating from the cavity (Fig.
0

33f). The photograph through the 5910 A spectral filter in

Fig. 33e) further illustrates that the radiance from the ori-

fice in Fig. 33d) is not due to impurity radiation.

3) Hollow cathode discharge characteristics

Three voltage-current characteristics for 6 g/sec,

2 g/sec and 0.30 g/sec argon mass flow through the hollow

cathode for currents between 10 kA and 30 kA are shown in

Fig. 34. All three characteristics show abrupt changes in

their slopes between 15 kA and 18 kA. If each characteristic

is approximated by two straight lines shown in Fig. 34, then

the slope ( AV/ AJ) of each characteristic changes from about

25 mQ (for J e 15 kA) to 3 mQ (for J > 18 kA).
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Abrupt changes in the operating characteristics of

low current hollow cathodes have been traced to the tran-

sition from a "plume" mode to a "spot" mode attachment as

the current is increased. The relation between this tran-

sition, which is usually accompanied by an appreciable drop

in discharge voltage, and the observed slope change in the

voltage-current characteristic for the large hollow cathode

is presently under investigation.

One of the significant experimental results is the

demonstration of ionized argon AII radiance from the hollow

cathode cavity at a low argon mass flow rate of 0.3 g/sec

through the cathode at a relatively high current of 29 kA.

The absence of such luminosity at a higher mass flow rate

of 6 g/sec of argon and a lower current of 12 kA has also

been demonstrated. These two modes of operation of the

hollow cathode discharge may also be distinguished on the

voltage-current characteristic which changes from a steep

slope at low currents to a much smaller slope at high cur-

rents. The mapping of profiles of potential and current

distributions with electrostatic and magnetic probes inside

and about the hollow cathode, currently in progress, can be

expected to yield detailed information regarding when "hollow

cathode mode operation" is achieved.

Appendix

Earlier a qualitative argument was presented for a

dynamical balance between gasdynamic and magnetic pressures

inside the hollow cathode cavity. A simple quantitative

determination is now presented.

An estimate of the gasdynamic pressure inside the cavity

for any given mass flow rate can be obtained using the super-

sonic isentropic flow tables for argon (1 = 1.67) assuming

an isentropic expansion of the cold gas flow from a Mach
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number of one at the hollow cathode inlet to one corres-

ponding to the cross sectional area of the cavity, which

is thirteen times the choking area.

The one-dimensional momentum equation for the flow in-

side the hollow cathode cavity in the cirection 9 is:

du + p= -B dBr= (4)
udz do Po dz

where = density

u = velocity, and

p = pressure

A first integral of (4) is

B2

( U)Uo + Po = ( Pu)U + p+ (5)

where subscript '"o" refers to a point upstream in the

hollow cathode cavity where no current and hence no mag-

netic pressure is assumed to exist and no subscript re-

fers to conditions well downstream in the cavity near the

front face of the cathode where the current density can be

assumed to be uniform.

An average magnetic pressure over the area must be

assumed to make the problem one-dimensional. For an as-

sumed uniform current density over the hollow cathode cav-

ity cross section, the magnetic field is axisymmetric and

given by
pOjr

B 2 (6)

The average magnetic pressure over the cross section is
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defined by

( B2  r 1

0

where r is the radius
C

Integration yields:

/2 I1 ' o/

B 2

2p O

2 Ir r dr (7)

of the hollow cathode cavity.

.2 2
u r c

1o
16 (8)

or in terms of total current

( B )
2p0o

u J2

2 2
16 Ir r

C

(9)

At a current level of 12 kA, with all of the current

assumed to attach inside the hollow cathode cavity, the

average magnetic pressure is

(B 21 ) = 3 x 104 N/m 2

The left hand side of equation (5) is equal to the

total pressure of the cold flow entering the hollow cath-

ode cavity and for a mass flow rate of 0.3 g/sec it is

known to be 8800 N/m2 . Thus, equation (5) reads:

8800 N/m 2 = ( u) u + p + 30,000 N/m2 (10)

This equation is balanced only if there is flow of gas in

the upstream direction during the discharge. Since no ef-

fects of such an upstream flow have been observed (heating
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of the injector orifice and burning of the tygon feed tube

to the hollow cathode) we must conclude that not all the

current attaches inside the hollow cavity. How much cur-

rent is carried by the hollow cathode can be determined by

magnetic probes in the cavity.

The preceding analysis exhibits the role that the mass

flow and gasdynamic pressure play in initiating and subse-

quently sustaining a hollow cathode discharge in this con-

figuration. Preliminary calculations show that probably not

all the current is carried by the hollow cathode cavity.

Further diagnostic probing of the potential and current dis-

tribution in the discharge will shed more light on this

problem.
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IV. PLASMADYNAMIC LASER STUDIES

IV-A. Photoelectric Measurements of Radiance Profiles
and Optical Depth (Hixon)

Time-resolved photoelectric spectroscopic studies of

the MPD arc jet with the boron nitride (BN) backplate in-

sulator (containing six injector ports) were undertaken

to 1) record radial and axial intensity profiles for vari-

ous species in the discharge, and 2) measure the optical

depth of the discharge plasma for certain transitions.

The equipment employed consisted of a Bausch & Lomb

grating monochromator and an RCA 1P28 photomultiplier tube

shown in Fig. 35. The monochromator has a linear disper-
0

sion of 16 A/mm. It was calibrated with a mercury lamp,

and its wavelength settings were found to be reproducible
0o

to ±2 A with 60% confidence. An entrance slit width of

200p and an exit slit width of 500p were chosen so that

1) the exit slit would be much larger than the entrance
0o

slit, and 2) the photomultiplier would see an 8 A spectral

interval, large enough to contain a given line and its wings
0o

even if the line center were mislocated by 2 A.

The discharge was imaged on the monochromator entrance

slit through a 42 cm focal length f/6 quartz lens and a first

surface plane mirror as shown in Fig. 35. The entrance slit

was masked in such a way that radiance from a region 1 cm

high and 0.8 mm wide in the discharge was permitted to enter

the monochromator. Different positions in the discharge

were viewed by realignment of the lens and mirror and by

movement of the entire apparatus. For initial work, the op-

tics were aligned at Z= 2.5 cm, R= 0.0 cm.
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The 1P28 photomultiplier circuitry involves a load re-

sistor L which was chosen as 1.8 MD which, together

with the parallel 1.0 Mf scope impedance and an esti-

mated stray capacitance of 10 1 1 F yielded a time constant

RC = 7 psec. This limits the decay time of the signal and

not the rise time. The value RC = 7 psec employed in this

study is still small compared to the 1000 psec scale of the

discharge duration. The present study was conducted at

photomultiplier operating conditions such that a signal to

noise ratio > 100 always prevailed.

It was determined that the J=16 kA, mr= 32 g/sec con-

dition gave the maximum value of J /i (8 kA2-sec/g) which

allowed 1) a flat voltage trace, 2) a voltage trace free of

noise, and 3) a quasi-steady AII PM trace. For this nominal

condition, the axial and radial species surveys were under-

taken. The interesting species are AI, AII, AIII, BII, NII,

and continuum radiation. The discharge radiation is largely
0

AII radiation, and a strong, isolated AII line at 4806 A was

selected as the standard line for AII measurements. AII

traces showed excellent shot-to-shot reproducibility. Spec-
143

trograms of the BN arcjet discharge were used for guidance

in selecting a vacant region of the spectrum for continuum

measurements. Since they show no line radiation between
o o o

4823 and 4843 A, an 8 A spectral region centered at 4833 A

was chosen to sample the continuum.

In order to verify that continuum radiation was being

recorded, two tests were devised. One, called the "linear-

ity test", consisted of plotting signal voltage against

spectral region size. If the radiance being recorded was

distributed in a continuous fashion, the plot should be

linear. If it is line radiation, it should be quite non-

linear. A second, the "side-stepping test," tested for con-

tinuous radiation by measuring the radiance at increasing

wavelength intervals from the line center and looking for a
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drastic reduction. Both of these tests depend on the con-

dition that the exit slit be much larger than the entrance

slit. The entrance slit was set at 200p. The exit slit
o

setting was 500p or more. The 8 A spectral region centered
o

at 4833 A was verified by both of the tests to be continuum.

Searches for the particular spectral lines were conduc-
0 o

ted in a similar manner. The AIII lines at 3336 A, 3344 A,
o

and 3285 A, each of which is prominent on spectrograms taken

of the MPD arc with a Plexiglas backwall in the discharge
143

chamber, were determined by linearity or side-stepping

tests to be not visible relative to the continuum background.
o

The NII line at 4631 A which was previously recorded in the

discharge chamber could not be identified since the measure-

ment showed no significant decrease in radiance when sub-

jected to the side-stepping test. One may conclude that the
o

line radiation at 4631 A is not significant relative to the

continuum background. It should be remembered that the photo-

multiplier optics look across the exhaust plume centerline

2.5 cm downstream of the anode face and a small NII density,

visible in the chamber, might be quite invisible further
o

downstream. A BII line previously recorded at 3451 A was

also not present. As a control, the strong AII lines at

3491 A and 4806 A were also subjected to the linearity and

side-stepping tests; they were quite easy to identify as line

and not continuum sources.

o
Using only the 4806 A AII line and the continuum at
o

4833 A, the radial and axial surveys of radiance were under-

taken and the results are presented in Figs. 36 and 37. The

expected functional form for the argon line radiance is given

by:

-E/kT

'AII ' Ii 11 )
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and for the continuum by:

-I -h J/kT

ICONT ni ne T e (12)

where ni and ne represent the densities of ions and elec-

trons, Te  is the electron temperature, E the energy of

the initial level of the transition and % the frequency of

the radiation. In order to examine the measurements for

their functional dependence the data were replotted versus

axial distance on a log-log graph (Fig. 38). From approxi-

mately 4 cm to 25 cm from the anode the graph is linear in-

dicating a power dependence on distance. The slope of the

AII radiance is approximately -1.6 and that for the continuum

-1.4. It is of interest to note that a previous survey of
0

AII radiance at 4880 A for the MPD arc with a Plexiglas back-

plate at the 16 kA, m= 6 g/sec condition plotted a straight

line of slope -2 on a similar log-log presentation.14 1  A

comparison of the radiances in (11) and (12) would indicate

a slope for the continuum on the log-log presentation twice

that of the ionized argon if the electron temperature were

approximately constant, and if ne = ni over the region of the

measurements. However, Fig. 38 shows the radiances for the

ionized argon and the continuum at approximately the same

slope indicating a decay of the electron temperature along

the direction of the flow. No further conclusions shall be

attempted because, as yet, little is known about the tempera-

tures, densities and the exhaust plume structure of the dis-

charge with the boron nitride insulator.

The modifications to the apparatus for optical depth

experiments are also shown in Fig. 35. An f =63 cm spherical

concave mirror was placed at 2 focal lengths from a point

1.6 cm downstream of the anode face on the discharge center-

line. The mirror images the discharge onto itself from the
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backside. The photomultiplier was then aligned to look at

both the discharge and its reflected image along the common

optical axis. If the discharge is transparent to its own

radiation, then the reflected radiation should add on to the

direct radiation from the discharge. The reflective optics

of f/8 return the entire cone of radiation that the photo-

multiplier optics of f/16 can accept. For this preliminary

test a direct calibration of the transmission and reflec-

tion losses of the optical components was not performed.

It can only be stated that perfect transparency of the dis-

charge corresponds to a slightly less than 100% increase

in radiance.

In order to test for self-consistency of the measure-

ments, a T= 0.8 transmission neutral density filter was in-

serted in the reflective optics. Since the radiation passed

through it twice, a total transmission of 0.64 resulted.

Optical depth measurements were undertaken for the
0

4806 A AII line at operating conditions of 16 kA at mass

flows m= 32 and 6 g/sec, and for the 4765 A AII line and
0

the continuum at 4833 A with m= 32 g/sec mass flow only.

The results are presented in Fig. 39.

0
For the m= 32 g/sec condition, the 4806 A AII line

shows an approximately 80% radiance increase with the re-

flective optics added. Accounting for the losses mentioned

above, one may conclude that the discharge is nearly trans-

parent for this transition. For the same arc operating con-
0

ditions, the 4765 A AII line shows only a 36% increase in

radiance with the reflective optics, indicating consider-

ably larger optical depth. The continuum also shows optical
0

depth of magnitude comparable to the 4765 A AII line as
0

does the 4806 A AII line for the m= 6 g/sec operating con-

dition. One may conclude that, under certain conditions,

significant absorption occurs.
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The accuracy of the measurements of the axial and

radial radiance profiles has been limited in these ex-

ploratory experiments in the interest of obtaining

initial results promptly. These studies can and will be

resumed in the near future with the appropriate choice of

injection geometry and materials used in the construction

of the discharge chamber.

The measurements of the optical depth can be con-

sidered as further initial steps of the on-going plasma-

dynamic laser studies. The results differ considerably in
0

optical depth for the 4806 A AII line, and other AII lines

and the continuum; therefore further experimental examina-

tions are presently in progress with optical components

whose transmission and reflection coefficients are cali-

brated. these measurements include larger regions of the

exhaust flow in which the electron densities and electron

temperatures can be lowered and raised when the operating

currents and mass flows are changed. The studies will then

be extended to a more appropriate injection geometry and

propellants possibly more suitable for the investigation of

plasmadynamic laser phenomena.
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IV-B. Spectrographic Study of Neutral Argon in the
MPD Discharge (von Jaskowsky)

In earlier spectroscopic work with MPD discharges in
105

this laboratory as well as elsewhere, neutral argon has

failed to manifest its presence on spectrographic records

in the visible and near-ultraviolet range. The presence

of AI is, however, of considerable interest especially in

plasmadynamic laser studies in the relaxing and recombining

flow of argon plasma from the MPD arc. Any preferential

population of the upper levels of either neutral or singly

ionized atomic constituents of a relaxing plasma may be

understood as a non-equilibrium recombination process with

subsequent cascading of the higher state population by elec-

tron collisions at relatively low electron temperatures.1 4 3

The increasing density of the neutral or lowest state of

ionization therefore constitutes a measure of recombination

in the relaxing flow with decaying electron temperature.

Earlier during this reporting period a series of spec-

trographic experiments were undertaken to determine the lo-

cations where neutral argon existed inside the discharge

chamber and in the exhaust flow of the MPD arc with the con-

ventional Plexiglas backplate insulator. The discharge was

operated with a 1 msec pulse of 16 kA with 6 g/sec argon

mass flow. The exhaust flow up to 54 cm from the exhaust

orifice was examined for AI radiance.

For the studies the discharge chamber was viewed side-

on through a glass window of full chamber diameter inserted

into the anode cylinder. A Steinheil GH glass prism spectro-

graph was adjusted to record the radiation over the spectral
o o

region from 4400 A to over 9000 A on Kodak High Speed Infra-

Red Sheet Film at a demagnification of the object of approxi-

mately 8.5:1 on the film. Parts of two typical spectrograms
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of the discharge across the discharge chamber, Fig. 40a,

taken at 1.2 cm from the chamber backwall, and Fig. 40b,

taken just in front of the tip of the cathode, show lines

of neutral and ionized argon, of hydrogen and of carbon

impurities and continuum radiation on the centerline. The

spectrograms exhibit distinctly different distributions of

the radiance of AI and of the other constituents over the

12.8 cm inside diameter of the discharge chamber. While

the AI radiance of the neutral argon flow is seen to be con-

centrated in narrow radial regions just in front of the in-

jector ports in Fig. 40a, it has spread appreciably just

1 cm further downstream in Fig. 40b. The map in Fig. 41

showing the observed distribution of the plasma constituents

has been obtained by superimposing the regions of highest

radiance of neutral and singly ionized argon from this and

other spectrograms on a diagram of the discharge apparatus.

For clarity of the illustration only the neutral and sing-

ly ionized argon components are shown, while AIII, the con-

tinuum and the impurities have been omitted. For comparison,

the boundaries and the line of maximum AII radiance in the

previously observed exhaust jets 1 have been superimposed

and are seen to correspond quite well. In near ultra-violet

spectrographic work reported earlier, 34 ,1 4 3 the presence

of doubly ionized argon AIII in the discharge has been es-

tablished for the same operating conditions. It was shown

to prevail inside the discharge chamber at somewhat closer

proximity to the axis when compared with AII and was ob-

servable in the exhaust flow in a region of approximately

2 cm diameter about the axis, 4 cm downstream of the anode

face.

Neutral argon is manifest immediately upon entering the

discharge chamber and is seen to skirt the ionized argon flow

which prevails at smaller radii. The presence of neutral

argon surrounding the ionized flow extends into the regions
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downstream of the anode. This observation allows the possi-

bility that some fraction of the propellant passes through

the discharge chamber without direct participation in the

electromagnetic acceleration and is exhausted at a relative-

ly low velocity.

Further downstream at 36 cm and 54 cm from the anode,

spectrograms show only the lines of neutral argon AI and the

H and HE lines; the AII lines are not seen at these down-
stream locations indicating the progress of relaxation and

recombination in the flow.

The observation of essentially completed recombination

at the 36 cm downstream location permits the identification

of the relaxation time for recombination. Using an average

velocity of 1.5 x 104 m/sec, as determined from time-of-flight

measurements, a relaxation time of 0.25 msec is obtained.

Assuming an electron temperature of 1 eV the expression for

the recombination rateA - 1 0 ,A-ll can then be used to compute a

residual electron density of 1.3 x 1014 cm- 3 at that location.

This density is quite close to the value of an electron dens-

ity of 10 cm which is obtained from the measured line
0

width due to Stark broadening of the HE line of 0.46 A on

the spectrographic record. The decreasing electron tempera-

ture in the flow has not been taken into account; a smaller

temperature would reduce the computed electron density pro-

viding an even closer agreement.

The region directly in front of the cathode has already

been characterized in earlier work 10 5 to contain a high elec-

tron density in a small volume of about one cm diameter.

Therefore the continuum radiation in Fig. 40b can be identi-

fied as "brems" continuum. In contrast, the radiance of the

striated continuum originating on the cathode surface in

Fig. 40a exhibits the texture of the cathode surface and de-

creases with wavelength much more rapidly than the brems con-

tinuum. Therefore, it may be assumed to originate at thermal
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radiation at the cathode surface consistent with a relative-

ly low surface temperature. A high electron density layer
105

is known to exist adjacent to the cathode surface and can

also be recognized in Fig. 40a where the H, and Hp profiles

are broadened. However, at the corresponding radial positions

there is no recorded continuum; hence, the optical depth is

small and the assumption of the thermal origin of the con-

tinuum appears to be justified.

When the argon mass flow was increased from 6 g/sec to

24 g/sec at the same current of 16 kA the levels of the

radiance of AI and AII 1.5 cm upstream of the anode were sig-

nificantly raised and its structure became less pronounced,

while the continuum radiance remained about the same. On the

other hand, raising the current from 16 kA to 32 kA at

m = 6 g/sec significantly decreased the AI radiance relative

to that of AII and increased as might be expected the brems

continuum radiance. In order to ascertain that the spectro-

grams were representative of the quasi-steady part of the

duration, a typical spectrogram of the middle of the discharge

chamber recorded under nominal operating conditions of 16 kA

for 1 msec at m = 6 g/sec was compared with one recorded at

the same current and mass flow, but at only one quarter of

the nominal 1 msec pulse duration. Any initial or terminal

transient radiative phenomena with the short pulse should

record at the same densities as those for the long pulse

while the steady state part would appear at a correspondingly

lower exposure. It was found that most spectral features were

preserved but at considerably reduced exposure, thus permit-

ting the conclusion that the spectrograms are representative

of the quasi-steady part of the discharge.
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Appendix A: Semi-annual Statement of Expenditures

PULSED ELECTROMAGNETIC GAS ACCELERATION

NASA NGL 31-001-005

1 July 1972 thru 31 December 1972

Direct Costs

I. Salaries and Wages

A.
B.
C.
D.

Professional
Students
Technicians
Supporting Staff

$ 24,526
6,500
8,203
3,859

$ 43,088

II. Employee Benefits (21% of IA,IC, ID) 7,683

III. Equipment

IV. Materials and Services 5,927

V. Travel

VI. Tuition

Indirect Costs

413

Total Direct Costs

2,200

$ 59,311

VIII. Overhead (75% of I)

Total

32, 316

$ 91,627




